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Detecting zero-point fluctuations with stochastic Brownian oscillators
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High-quality quantum oscillators are preferred for precision sensing of external physical parameters because
if the noise level due to interactions with the environment is too high, metrological information can be lost due
to quantum decoherence. On the other hand, stronger interactions with a thermal environment could be seen as
a resource for new types of metrological schemes. We present a general amplification strategy that enables the
detection of zero-point fluctuations using low-quality quantum oscillators at finite temperature. We show that by
injecting a controllable level of multiplicative frequency noise in a Brownian oscillator, quantum deviations from
the virial theorem can be amplified by a parameter proportional to the strength of the frequency noise at constant
temperature. As an application, we suggest a scheme in which the virial ratio is used as a witness of the quantum
fluctuations of an unknown thermal bath, either by measuring the oscillator energy or the heat current flowing
into an ancilla bath. Our work expands the metrological capacity of low-quality oscillators and can enable new
measurements of the quantum properties of thermal environments by sensing their zero-point contributions to
system variables.
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Introduction. Brownian motion of classical and quantum
oscillators subject to dissipation and noise fluctuations is a
paradigmatic model with direct fundamental [1–4] and exper-
imental [5,6] implications in several areas of physics, from
state tomography and spectroscopy [7,8] to tests on gravita-
tion [9]. Dissipation and noise result from the interaction of
the system oscillator with its environment, often assumed as
a large set of degrees of freedom that are not controlled but
influence the dynamics of the system [10]. Strong interac-
tions with a thermal environment are avoided in metrological
schemes, as they reduce the sensitivity of system properties
to external parameters such as external fields. This is critical
in quantum sensing, as the metrological information con-
tent is severely limited by environment-induced decoherence
[11,12].

Implementing high-quality (high-Q) oscillators that are
well isolated from the environment is essential for metrolog-
ical schemes that map unknown electric and magnetic fields
to variations in the oscillator frequency [13]. Frequency shifts
are more difficult to measure with noisier low-Q oscillators.
On the other hand, stronger dependence of the oscillator ob-
servables on the detailed structure of the environment can
open new opportunities for obtaining information from the
surroundings. For a system interacting with an environment
formed by a mediator field coupled to a source system, study-
ing the system’s effective dynamics could reveal fundamental
aspects of the mediator field even without having access
to its full description. This might be of great interest for
deciding, for instance, whether or not gravity is quantum.
Quantum mechanical proposals to address this problem in-
clude full spectroscopy of the environment [14], generation
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of entanglement through a mediator field [9,15], or studying
decoherence due to environmental fields [16,17]. However,
witnessing the nature of an environment might be accessible
without appealing to intrinsic quantum features (entangle-
ment, decoherence), as it occurs with Casimir forces [18,19],
where zero-point fluctuations manifest macroscopically [20].

For classical harmonic oscillators that are completely iso-
lated from their environments, the virial theorem establishes
that the average kinetic energy 〈K〉 equals the average po-
tential energy 〈V 〉 [21]. The virial ratio R ≡ 〈K〉/〈V 〉 is also
equal to one for quantum harmonic oscillators that undergo
unitary dynamics [22]. Environment-induced deviations of R
from unity have only recently been explored in the quantum
regime from a formal perspective [23,24], but a connection be-
tween the virial ratio and experimentally accessible oscillator
variables has not been developed yet.

In this Letter we show that a low-Q Brownian oscillator
that is subject to a frequency noise at low temperatures can
be used to probe environmentally induced changes in the
virial ratio R, either by measuring the oscillator energy E
or heat currents J between the system and the environment.
Deviations from R = 1 are shown to scale with the tunable
magnification factor W = QD�/(1 − QD�), where D is the
frequency noise strength and � the oscillator natural fre-
quency. Such a magnification can be exploited for precision
measurements. At low temperatures, the proposed scheme is
shown to represent a feasible approach for measuring zero-
point fluctuations. We also propose a two-bath protocol for
probing the quantum nature of fluctuations of an unknown
thermal bath that couples to the frequency-driven Brownian
oscillator, by measuring the oscillator energy or the heat cur-
rent flow between the system and an ancilla bath, as illustrated
in Fig. 1.
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FIG. 1. Scheme of the scenario. A nonequilibrium Brownian os-
cillator of mass M and frequency � is subjected to white frequency
noise (given by the stochastic variable ϕ and characterized by the
strength D). The oscillator is coupled to two Ohmic baths charac-
terized by damping constants �1 and �2, stochastic force ξ1,2, and a
large cutoff frequency (�C � {�,�1,2}). An Ancilla bath is assumed
to introduce strong dissipation (�1 � �). The nature of the target
bath is assumed unknown.

Stochastic Brownian oscillator. We consider a har-
monic oscillator whose frequency is randomly driven and
simultaneously interacts with one or more thermal environ-
ments. Frequency noise is given by �(t ) = �[1 + ϕ(t )]1/2,
with white noise amplitude ϕ(t ) of the zero mean and second
moment 〈ϕ(t )ϕ(t ′)〉 = 2Dδ(t − t ′). D is the noise strength
(in Hz−1). Higher-order cumulants are 〈〈ϕ(t1) · · · ϕ(tn)〉〉 =
2nDnδ(t1 − t2) · · · δ(tn−1 − tn) with Dn taken as in Ref. [25].
Physically, frequency fluctuations could be implemented us-
ing laser intensity noise in levitated nanoparticles by optical
tweezers [26], voltage noise in an ion trap [7], or spec-
tral diffusion in single-molecule substrates [27] (see Sec. A
of Supplemental Material (SM) for suggested physical im-
plementations [28]). We neglect any nonlinear backreaction
associated with the injection of noise energy in the oscillator
[29]. For the analysis below, the oscillator can be classical or
quantum mechanical.

Thermal environments correspond to sets of harmonic
oscillators in thermal states with temperature Tk , where k
labels different baths (k = {1, 2} in Fig. 1). Bath oscillators
are linearly coupled to the main system oscillator (see the
Caldeira-Leggett model details in SM Sec. B [28]). Eliminat-
ing the bath variables results in damping terms and stochastic
fluctuation forces represented by the random variables ξk ,
acting on the main oscillator. The former are given by
(d/dt )[

∫ t
0 dτ �̃k (t − τ )x(τ )], having x(t ) as the main oscilla-

tor amplitude and �̃k (t ) the damping kernels which depend on
the bath cutoff frequency �C and the damping constants �k .

The system dynamics is non-Markovian in general,
but for large cutoff frequencies �C � {�,�1,2} we have
(d/dt )[

∫ t
0 dτ �̃k (t − τ )x(τ )] ≈ 4�k ẋ(t ), which gives Marko-

vian evolution. The resulting equation of motion for x(t ) reads

ẍ(t ) + �2[1 + ϕ(t )]x(t ) + 4�ẋ(t ) = ξ (t )

M
, (1)

where � = �1 + �2 and ξ = ξ1 + ξ2, with stochastic force
correlations given by 〈ξ (t )ξ (t ′)〉 = (1/2)[N1(t − t ′) + N2(t −
t ′)] due to the independence of the baths [i.e., 〈ξ1(t )ξ2(t ′)〉 =
0]. The noise kernels (symmetrized correlations) are Nk (t −
t ′) = 〈ξk (t )ξk (t ′) + ξk (t ′)ξk (t )〉, where the expectation value
is over the bath ensemble. For quantum thermal baths, noise
kernels are given by (h̄ = 1) [30,31],

Nk (t − t ′) = 2
∫ +∞

0
dωJk (ω) coth

(
ω

2kBTk

)
cos[ω(t − t ′)],

(2)

where Jk (ω) = (2M�kω/π ) f (ω/�C) is the spectral density
of the kth bath, which we assume to be Ohmic with a
Lorentzian cutoff function f (x) = 1/(1 + x2). The thermal
factor coth(ω/[2kBTk]) = 1 + 2nk (ω) presents the sum of the
contributions of the zero-point and the thermal fluctuations,
with the latter associated to the Bose-Einstein distribution
n. The high-temperature limit for a given bath corresponds
to �,�1,2 	 �C 	 kBTk , which allows the approximation
Nk (t − t ′) ≈ 4M�kkBTk�C exp[−�C(t − t ′)], i.e., exponen-
tially correlated noise. A sufficiently large cutoff frequency
gives the classical Nk (t − t ′) → 4M�kkBTkδ(t − t ′), corre-
sponding to white noise. Comparing the latter form with
the damping kernel in the large cutoff limit, the classical
Fluctuation-Dissipation Relation (FDR) is verified. In this
Letter, we consider the high-temperature limit as a definition
of classical baths. This criteria relies on the fact that the
classical limit neglects both the zero-point fluctuations and the
(quantum) blackbody features of the occupation number nk .

Steady-state energy distribution. Equation (1) without dis-
sipation describes parametric resonances when the variable
ϕ(t ) is replaced by harmonic driving (ϕ(t ) → AD cos[ωDt]),
with some amplitude AD and driving frequency �D. For spe-
cific values of ωD, the oscillator undergoes exponential growth
of x(t ) with time [32]. In our case, frequency driving is not
harmonic but random, and white noise injects energy on the
system at all frequencies. A sufficient amount of dissipation
can compensate for this energy injection and lead the system
to a stable steady state. Unbalanced energy injection can give
unstable dynamics. Stability criteria for our case are discussed
below.

In the large cutoff regime, we follow the approach in Ref.
[25] for solving Eq. (1) to obtain first- and second-order
moments of x. Analytical expressions in the steady state can
be derived under the assumption of white noise for ϕ, while
preserving the quantum fluctuations on the bath, despite the
main oscillator being formally treated as statistically classical
(see Refs. [33,34] for approaches restricted to the classical
case). From 〈x2〉 and 〈p2〉, the stationary energy E of the
frequency-driven oscillator can be written as

E = E0[1 + 2W/(1 + R)], (3)

where E0 = 〈K〉 + 〈V 〉 and R are the energy and the virial
ratio of the undriven Brownian oscillator (D = 0), while W =
QD�/(1 − QD�) is the amplification factor, with Q = �/4�
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the quality factor of the main oscillator. The derivation of
Eq. (3) is summarized in SM Sec. C [28].

The dynamical stability of the oscillator matches the pos-
itivity of the energy. The latter is given by the condition
QD� < 1, encoding the competence between the dissipation
and the strength of the frequency noise (see, for instance, Ref.
[35]). Within the space of stable solutions, the fact that the
correction to the undriven energy E0 scales with D, for fixed
Q and �, opens the opportunity of probing the environment
induced deviations of the classical virial ratio R = 1. Such
deviations have been discussed [24], but feasible experimen-
tal schemes for detecting such deviations are not available.
Equation (3) shows that by directly measuring the energy
of a classical or quantum Brownian oscillator with tunable
frequency noise strength D, bath-induced deviations from the
virial theorem can be amplified in stationary measurements.
Rewriting Eq. (3) as E/E0 = 1 + FW , with F = 2/(1 + R),
suggests that by measuring E with different driving strengths
D ∼ W , deviations from the classical virial ratio could be
found from the slope F � 1, with the equality holding in
the classical limit Rcl = 1. Also, it is worth noting that other
forms of writing the energy open the possibility for measuring
the steady state value of 〈x2〉 at D = 0 with a similar strategy
as for R (see SM Sec. C [28]).

Detecting deviations from the virial theorem. To understand
the regimes of R that could accessible with oscillator energy
measurements, it is instructive to rewrite the stationary solu-
tion for 〈K〉 as (see SM Sec. C [28] for the derivation)

〈K〉 = �

2

∫ ∞

0

du

π

u coth(u/T̃ )

Q([1 − u2]2 + [u/Q]2)
u2 f (u/uC), (4)

where T̃ = T/T0 is the ratio between the classical thermal en-
ergy (E (cl)

0 = kBT ) and the oscillator zero-point energy (�/2),
i.e., T0 ≡ �/(2kB), and uC ≡ �C/� is a cutoff parameter.
The potential energy 〈V 〉 has the same integral expression
as 〈K〉 with the replacement u2 f (u/uC) → 1 (see SM Sec. C
[28]). Only the kinetic energy needs to be regularized with a
cutoff function mantaining the well-known dependence on uC

[36]. Deviations from the classical virial theorem (Rcl = 1)
can be expected in the combined regime of low temperatures
(T̃ � 1) and strong system-bath coupling (low Q). For high-
temperatures [T̃ � uC in Eq. (4)] the classical ratio 〈K〉 =
〈V 〉 ≈ kBT/2 holds for all system-bath coupling strengths,
in agreement with the equipartition theorem. For high-Q
oscillators (equivalent to the weak-coupling limit, Q � 1),
we have that u/[πQ([1 − u2]2 + u2/Q2)] → [1/(2u)][δ(u −
1) + δ(u + 1)], giving 〈K〉 = 〈V 〉 = (�/4) coth(1/T̃ ), satis-
fying R = 1 at all temperatures (see SM Sec. C [28]).

Figure 2 shows the virial ratio R for a Brownian oscilla-
tor as a function of the reduced temperature T̃ , for different
quality factors Q. The cutoff parameter is set to uC = 103. As
discussed above, the classical limit Rcl = 1 is approached as
the thermal energy exceeds the zero-point energy (T̃ � 1) and
low-temperature deviations from the classical limit are sup-
pressed as the coupling to the bath becomes weaker (higher
Q values). Up to ∼30% deviations from the classical limit
are expected at lower temperatures (T̃ ∼ 0.1) for relatively
lossy oscillators (Q ∼ 10). We ruled out that the calculated
deviations from Rcl = 1 are a cutoff-dependent artifact by

FIG. 2. Virial ratio R = 〈K〉/〈V 〉 as a function of the normalized
temperature T̃ for an oscillator with quality factor Q = 10, 20, 40
(solid, long dashed, short dashed) and a cutoff frequency for the
bath QC = 103. The blue curves correspond to the full expression
for a Brownian oscillator in the steady state under the influence of a
quantum thermal bath, including zero-point fluctuations. Red curves
correspond to the lower bound on R obtained from applying the
Heisenberg uncertainty principle (shaded area). The green solid line
corresponds to the value of the ratio for a Brownian oscillator under
the influence of a “classical” thermal bath.

comparing with the fundamental lower bound R � RH ≡
�2/16〈V 〉2, obtained from Heisenberg’s uncertainty relation

p2
x2 � 1/4, given that 〈x〉 = 〈p〉 = 0. Since RH only
depends on the potential energy, it is effectively cutoff in-
dependent in the large cutoff regime. While the Brownian
oscillator model gives deviations from the virial theorem
that depend on the cutoff parameter, the Heisenberg bound
guarantees that there are bath-induced deviations at very low
temperatures.

As mentioned above, there is a limit to how strongly
the oscillator can be driven without undergoing parametric
amplification into unstable steady states. Figure 3(a) shows
the magnitude of the net energy deviation 
 = E (cl)/E (cl)

0 −
E/E0 = W (1 − F ) when the bath is either classical or quan-
tum, expected for different Q factors and dimensionless noise
strength D�, for stable configurations satisfying QD� < 1.
Relatively large net energy deviations 
 ∼ 0.2 are expected
for Q < 10 and ϕ-noise strength

√
2D� ∼ 0.35. This sug-

gests that low-Q oscillators are more suitable for observing
larger variations of F .

Deviations from classical virial theorem are larger at lower
temperatures, because zero-point bath fluctuations become
important. A manifestation of this is the strong dependence
of R with the bath’s cutoff frequency �C. This dependence is
lost in the high-temperature (classical) limit when the Bose-
Einstein distribution cutoff n dominates over �C. In other
words, by measuring the total oscillator energy E , and access-
ing R, it is possible to assess whether the thermal environment
is quantum or classical. Figure 3(b) shows the differences
in slopes 
F1 = |FQ − Fcl| between quantum and classical
thermal baths, as a function of the dimensionless temperature
T̃ . Quantum baths satisfy FDR via the quantum thermal fac-
tor coth(u/T̃ ), i.e., including both zero-point and blackbody
contributions, and classical baths satisfy FDR through the
high-temperature factor T̃ /u. For both cases, we set Q = 10
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FIG. 3. (a) Net energy deviation 
 = E (cl)/E (cl)
0 − E/E0 = W (1 − F ) over the stability region of an oscillator at temperature T̃ = 1/4 as

a function of D� and Q, with uC = 103. (b) Difference of the virial factor 
F1 = |FQ − Fcl| as a function of the normalized temperature T̃ for
the single bath case when the bath is either quantum or classical, with Q = 10 and uC = 103. (c) Variation of the virial factor 
F2 = |F2,Q −
F2,cl| for the two-bath scenario with temperatures T1,2 and different damping rates such that the relative damping is defined γ ≡ �1/(�1 + �2).
The variation is considered between scenarios where the ancilla bath is fixed to be quantum and the target is either quantum or classical. The
dashed vertical line corresponds to thermal equilibrium (T1 = T2), with T̃1 = 1/4, Q = 10, and uC = 103.

and uC = 103. As expected, at higher temperatures zero-point
contributions cannot be distinguished, but differences 
F of
over 12% are predicted at low temperatures.

Probing the nature of an unknown bath. Stochastic fre-
quency Brownian oscillators can be used as probes of a
second bath (see Fig. 1). A known ancilla bath with tunable
damping rate �1 and temperature T1 is coupled to the main
oscillator, which in turn is coupled to a second target bath,
such that only the damping constant �2 is previously known
from the oscillator’s relaxation dynamics without frequency
noise. The temperature of the target bath (T2) is only approx-
imately estimated, so it is possible to look for differences in
the virial ratio. The ancilla bath is quantum mechanical (i.e.,
includes zero-point fluctuations and Bose-Einstein thermal
fluctuations), but the quantum or classical nature of the target
bath is unknown.

For nonequilibrium scenarios (T1 
= T2), a steady heat cur-
rent is expected to flow between baths from higher to lower
temperature, through the main oscillator [2]. Frequency noise
acts as an additional energy injection source, therefore con-
tributing to the stationary heat current between baths. From
the power balance expression dE/dt = J1 + J2 + W , where
W ≡ �2〈ϕxp〉 is the energy injected by the frequency noise,
we extend the methods in Refs. [25,37] to obtain the heat
current Jk from the driven oscillator to the kth bath of the form
(derivation in SM Sec. D [28])

Jk = J (0)
k − 4�kE0WF , (5)

where the first term J (0)
k (T1, T2) is the standard heat current

without frequency noise, and the second term is a noise-
induced correction, which again scales linearly with the
magnification factor W and the virial factor F . The virial
factor is a function of the properties of the two baths, i.e., F =
F (T1, T2). The same occurs for the energy E0 = E0(T1, T2).
The quality factor Q is defined over the total damping � =
�1 + �2.

Equation (5) suggests that measurements of current J1 into
the ancilla bath can be used to determine the nature of the tar-
get bath, by detecting the value of F for a specific scenario. To

illustrate this point, a measurement protocol can be proposed:
(i) � and �1 are obtained from a measurement of the decay of
the oscillator only coupled to the ancilla bath and D = 0. (ii)
�2 is obtained from a similar measurement as before when
the oscillator is coupled to both baths. (iii) Measurements
on the oscillator when D = 0 give E0 and J (0)

1 . (iv) Energy
or ancilla current measurements are performed for different
values of D (thus W), obtaining from the slope the value
of F .

Figure 3(c) shows the variation 
F2 ≡ |F2,Q − F2,cl| de-
fined as the difference in F when the ancilla bath is set to
be quantum but the target is either quantum or classical, as
a function of the fractional ancilla damping parameter γ ≡
�1/(�1 + �2) and the temperature ratio T2/T1 (log scale). We
set Q = 10, QC = 103, and T̃1 = 1/4. The 12% deviation in
Fig. 3(b) stands as the maximum difference, occurring for
small γ (i.e., negligible contributions of the ancilla bath) and
low temperatures of the target bath. As thermal differences
increase, one of the two baths dominates over the other. If the
target bath is the coldest, the differences are larger. Consid-
ering the dependence with γ , the difference increases when
the target bath is dominant. However, decreasing γ implies a
smaller J1, suggesting an interplay between having a dominant
target bath and a measurable J1. Differences up to 2% are
found over broad nonequilibrium conditions when the ancilla
bath has the smallest damping rate.

Conclusion. We have shown that a stationary Brownian
oscillator subject to frequency (multiplicative) noise can be
used to assess the quantum or classical nature of a target bath,
based on deviations from the classical virial ratio 〈K〉/〈V 〉 =
1, which can be magnified by a suitabe tuning of the noise
strength D. This is achieved by either measuring the total os-
cillator energy E or the heat current flowing to an ancilla bath,
but without accessing or intervening directly the target bath by
means of direct measurements on it or sensing its interaction
with the oscillator. We show that due to stability constraints,
lower-quality oscillators (Q < 10) subject to strong frequency
driving are best suited for detecting deviations from the virial
theorem, which are shown to exceed 10% for thermal energies
below the zero-point motion of the driven oscillator (2kBT <
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�). Since frequency noise admits potential implementations
in a variety of available physical platforms such as levitated
nanoparticles in fluctuating optical tweezers [26], trapped ions
in fluctuating Paul traps [7], optical cavities with fluctuating
walls (see SM Sec. A [28]), and single molecules undergo-
ing spectral diffusion [27], our theoretical predictions can be
readily tested.

Generalizations of our results to oscillators with different
spectral densities for the baths or colored frequency noise are
possible. Different physical implementations could be rele-
vant in hybrid quantum platforms such as an ancilla bath being
electromagnetic and the target bath being gravitational [38],
phononic, or plasmonic [39], although case by case studies

are required depending on the implementation. Our work thus
opens avenues for sensing the fundamental nature of an en-
vironment, with perspectives towards other applications that
might leverage from the magnification factor for increasing
the measurement’s sensitivity.
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